MPSI 2017-2018

Informatique

TP 5 : Calcul approché d'intégrales.

Partie I. Implémentation

- 1. Réécrire la fonction $rectangles_g(f,a,b,n)$, prenant pour argument deux flottants a et b, une fonction f et un entier n, et calculant l'approximation de $\int_a^b f$ donnée, par la méthode des rectangles à gauche avec n rectangles.
- 2. Écrire de même les fonctions rectangles_d(f,a,b,n) (rectangles à droite) et trapezes(f,a,b,n) (trapèzes).

Partie II. Analyse de l'erreur commise

- 1. Que vaut $\int_0^1 e^x dx$?
- 2. Calculer l'erreur commise (en valeur absolue) lorsqu'on approche cette intégrale à l'aide de la fonction $rectangles_g$ pour les valeurs de n suivantes : n = 10, n = 100, n = 1000, n = 100000, n = 1000000.
- 3. Faire de même pour les fonctions rectangles_d(f,a,b,n) et trapezes(f,a,b,n).
- 4. Quels théorèmes mathématiques admis semblent confirmés par ces tests?

Partie III. Analyse graphique

On souhaite observer plus visuellement cette confirmation sur cet exemple et d'autres. On rappelle qu'on peut tracer des courbes (qu'on approche par des lignes brisées) à l'aide des fonctions plot et show de la bibliothèque mathplotlib.pyplot).

1. Exécutez-le programme suivant. Que fait-il?

```
x = [i/100 for i in range(0,200)]
y = [x[i]**2 for i in range(0,200)]
plot(x, y)
show()
```

2. Écrire une fonction erreur_commise_exp_recg(n1,n2) qui trace la courbe de la fonction donnant <u>l'inverse</u> de l'erreur commise sur l'exemple de la partie II, en fonction de $n \in [n_1, n_2 - 1]$ lorsqu'on utilise la méthode des rectangles à gauche.

- 3. Récidiver avec erreur_commise_exp_trap(n1,n2) pour les trapèzes. Tester. Convainquant?
- 4. Écrire erreur_commise_recg(f,a,b,theorique,n1,n2) et erreur_commise_trap(f,a,b,theorique,n1,n2) faisant la même chose mais pour une fonction f quelconque intégrée sur un intervalle [a, b] quelconque, étant entendu que l'utilisateur doit donner la valeur exacte de theorique = ∫_a^b f. Tester. Convainquant?

Partie IV. Fonction d'erreur

La fonction d'erreur notée erf est une fonction importante en analyse et en probabilités. Elle ne peut pas s'exprimer à l'aide de sommes/différences/produits/quotients/composées de fonctions usuelles 1 mais est définie par une intégrale :

 $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt.$

On se propose d'écrire une fonction erf(x) qui prend comme argument un flottant x et retourne l'approximation de erf(x) calculée à l'aide de la méthode des trapèzes pour n = 100|x+1|.

- 1. Pourquoi 100[x+1] plutôt que, par exemple, 100000?
- 2. Écrire une fonction erf(x) qui prend en argument un flottant x et retourne l'approximation de erf(x) calculée comme proposé.
- 3. Écrire une fonction trace_erf() qui ne prend pas d'argument et trace la courbe représentative de erf. Un tracé sur [-5,5] est largement suffisant : pourquoi?

 Attention, il y a au moins deux façons de procéder. L'une des deux est bien plus pertinente que l'autre!

^{1.} Ca se démontre. Mais c'est dur.