Algèbre linéaire

L'élite de ce pays permet de faire et défaire les modes, suivant la maxime qui proclame : "Je pense, donc tu suis."

P. Desproges

Exercice 1

Montrer que les familles suivantes sont libres :

- 1. $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ avec $\overrightarrow{u}(1,2,3,4)$, $\overrightarrow{v}(1,3,1,1)$ et $\overrightarrow{w}(1,2,4,4)$ dans \mathbb{R}^4 .
- 2. (u, v, w) avec $u_n = 2^n$, $v_n = n$ et $w_n = n^2$ dans $\mathcal{F}(\mathbb{N}, \mathbb{R})$.
- 3. (P_0, \ldots, P_n) avec $P_k = (X+1)^k$ pour tout k de $\{0, \ldots, n\}$ dans $\mathbb{R}[X]$.

Exercice 2

On note
$$M = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, N = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

- 1. Calculer N^2 et N^3 . En déduire N^n pour tout n de \mathbb{N} .
- 2. Exprimer M en fonction de N et I. En déduire M^n pour tout n de \mathbb{N} .
- 3. Développer $(I+N)(I-N+N^2)$. En déduire M^{-1} .

Exercice 3

Soit la matrice A:

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

En faisant le moins de calculs possibles, déterminer le rang, l'image et le noyau de A.

Exercice 4

Considérons la matrice $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ et f l'application de $\mathcal{M}_2(\mathbb{R})$ dans $\mathcal{M}_2(\mathbb{R})$ définie pour tout M de $\mathcal{M}_2(\mathbb{R})$ par f(M) = AM.

- 1. Montrer que f est linéaire.
- 2. Déterminer sa matrice dans la base canonique de $\mathcal{M}_2(\mathbb{R})$.

Soient

$$\begin{cases} F &=& \left\{ (x,x,x) \in \mathbb{R}^3 \, / \, x \in \mathbb{R} \right\} \\ G &=& \left\{ (0,y,z) \in \mathbb{R}^3 \, / \, y,z \in \mathbb{R} \right\} \\ H &=& \left\{ (x,y,z,t) \in \mathbb{R}^4 \, / \, x = 2y-z,t = x+y+z \right\} \end{cases}$$

- 1. Montrer que F et G sont deux sous-espaces vectoriels de \mathbb{R}^3 . Préciser pour chacun de ces sous-espaces vectoriel une base et sa dimension. Sont-ils en somme directe?
- 2. Vérifier que H est un sous-espace vectoriel de \mathbb{R}^4 . En donner une base et la dimension

Exercice 6

Soit a_0,\ldots,a_n des réels distincts. Considérons l'application φ de $\mathbb{R}_n[X]$ dans \mathbb{R}^{n+1} définie par :

$$\varphi(P) = (P(a_0), \dots, P(a_n))$$

- 1. Montrer que φ est une application linéaire.
- 2. Montrer que φ est bijective.
- 3. Soient (e_1, \ldots, e_{n+1}) la base canonique de \mathbb{R}^{n+1} . Pour tout i de $\{0, \ldots, n\}$, notons L_i le polynôme de $\mathbb{R}_n[X]$ définie par $L_i = \varphi^{-1}(e_{i+1})$. Déterminer pour tous i et j de $\{0, \ldots, n\}$ la valeur de $L_i(a_j)$.
- 4. En déduire toutes les racines de L_i avec leur multiplicité et une expression factorisée de L_i .
- 5. Montrer que la famille $\beta = (L_0, \dots, L_n)$ est une base de $\mathbb{R}_n[X]$.
- 6. Déterminer les coordonnées d'un polynôme P quelconque de $\mathbb{R}_n[X]$ dans la base β .
- 7. En déduire que :

$$L_0 + L_1 + \ldots + L_n = 1$$

Exercice 7

Soit f une application de \mathbb{R} dans \mathbb{R} définie par $f(x) = P(x)e^{mx}$ avec P un polynôme non nul sur \mathbb{R} de degré n et m un réel non nul. Le but de l'exercice est de déterminer une méthode permettant de trouver une primitive de f. Considérons l'application ϕ définie de $\mathbb{R}_n[X]$ dans $\mathbb{R}_n[X]$ par :

$$\forall Q \in \mathbb{R}_n[X], \ \phi(Q) = Q' + mQ$$

- 1. Montrer ϕ est une application linéaire.
- 2. Montrer que ϕ est injective. En déduire que ϕ est un isomorphisme.
- 3. En déduire qu'une primitive de f s'écrit sous la forme $Q(x)e^{mx}$ avec deg(Q) = deg(P).
- 4. Calculer en utilisant la méthode précédente : $\int_0^1 x^5 e^x dx$

Exercice 8

Soit E une \mathbb{R} -espace vectoriel, u un endomorphisme de E et $P = a_0 + a_1.X + ... + a_nX^n$ un polynôme de $\mathbb{R}[X]$. On note P(u) l'endomorphisme :

$$P(u) = a_0 Id + a_1 u + \dots + a_n u^n$$

où $u^k = u \, o \, u \, o \, \dots \, o \, u \, (k$ fois). Enfin P est un polynôme annulateur de u si et seulement si P(u) = 0

- 1. Montrer que l'ensemble A des polynômes annulateurs de u est un \mathbb{R} -espace vectoriel.
- 2. Montrer que pour tout polynôme P, l'ensemble

$$(P) = \{PQ/Q \in \mathbb{R}[X]\}$$

est un sev de $\mathbb{R}[X]$

3. Considérons l'ensemble :

$$B = \left\{ deg(P) \in \mathbb{N} \ / \ P \in A \setminus \{0\} \right\}$$

On admettra que B est non vide. Expliquer pourquoi B admet un minimum que l'on notera n_0 .

- 4. Montrer qu'il existe un polynôme unitaire P_0 dans A de degré n_0 . On l'appelle le polynôme minimal de u. On rappelle qu'un polynôme est unitaire si et seulement si son coefficient dominant vaut 1.
- 5. Montrer que $(P_0) \subset A$.
- 6. Montrer que $A \subset (P_0)$.
- 7. En déduire l'unicité du polynôme minimal de u.