Warning: Undefined array key "NumMenu" in /homepages/41/d505272648/htdocs/BDD-Exos/Cours.php on line 12
Psi - Math - Lycée Alphone Daudet
Cours

Séries numériques.

Login / Mot de passe


$$ \newcommand{\SetN}{\mathbb{N}} \newcommand{\SetR}{\mathbb{R}} \newcommand{\SetC}{\mathbb{C}} \newcommand{\SetK}{\mathbb{K}} \newcommand{\SetZ}{\mathbb{Z}} \newcommand{\SetQ}{\mathbb{Q}} \newcommand{\SetU}{\mathbb{U}} \newcommand\ds[0]{\displaystyle} \newcommand\PCar[1]{\large{\chi}_{#1}} \newcommand{\=}{\:=\:} \newcommand\tendvers[2]{\displaystyle\mathop{\longrightarrow}_{#1\rightarrow#2}} \newcommand\tr[0]{\:^t\!} \newcommand\limite[2]{\displaystyle\mathop{\text{lim}}_{#1\rightarrow#2}\:} \newcommand\Sup[1]{\displaystyle\mathop{sup}_{#1}} \newcommand\Inf[1]{\displaystyle\mathop{inf}_{#1}} \newcommand\Haut[1]{} \newcommand\vect[1]{\overrightarrow{#1}} \newcommand\tendversCU[0]{\:\displaystyle\mathop{\Large\longrightarrow}_{n\rightarrow+\infty}^{_{CU}}\:} \newcommand\tendversCS[0]{\:\displaystyle\mathop{\Large\longrightarrow}_{n\rightarrow+\infty}^{_{CS}}\:} \newcommand\tendversCN[0]{\:\displaystyle\mathop{\Large\longrightarrow}_{n\rightarrow+\infty}^{_{CN}}\:} \newcommand\tendversCUS[0]{\:\displaystyle\mathop{\Large\longrightarrow}_{n\rightarrow+\infty}^{_{CUS}}\:} \newcommand\tendversNorme[1]{\:\displaystyle\mathop{\Large\longrightarrow}_{n\rightarrow+\infty}^{#1}\:} \newcommand\simL[0]{\displaystyle\mathop{\sim}_{^{^L}}} \newcommand\simC[0]{\displaystyle\mathop{\sim}_{^{^C}}} \newcommand\simLC[0]{\displaystyle\mathop{\sim}_{^{^{LC}}}} \newcommand\fonction[5]{ \begin{array}{cccc} #1\::\:& #2 & \rightarrow & #3 \\ & #4 & \mapsto & \ds #5 \ \end{array}} $$
Liste chapitres Plan du chapitre
Section
sous-section
II. Séries à termes positifs.

          II.2. Théorème de comparaison.


Théorème de comparaison.6
Soit $\sum a_n$ et $\sum b_n$ des séries à termes positifs vérifiant l'une des quatre propriétés suivantes APCR : $$a_n\leq b_n\hskip0.95cm\text{ou}\hskip0.95cm a_n=o(b_n)\hskip0.95cm\text{ou}\hskip0.95cm a_n=O(b_n)\hskip0.95cm\text{ou}\hskip0.95cm a_n\sim b_n$$ Alors :
  1. Si $\sum b_n$ convergente alors $\sum a_n$ convergente.
  2. Si $\sum a_n$ divergente alors $\sum b_n$ divergente.


Remarque.
Bien sûr, comme pour les intégrales, aucun résultat si $\sum a_n$ convergente ou si $\sum b_n$ divergente.

Exercice.7
Déterminer la nature de $\:\:\ds\sum \frac{ln(n)}{n}\:\:$ et $\:\:\ds\sum \frac{\sin^2(n)}{n^2}\:\:$.