Warning: Undefined array key "NumMenu" in /homepages/41/d505272648/htdocs/BDD-Exos/Cours.php on line 12
Psi - Math - Lycée Alphone Daudet
Cours

Séries numériques.

Login / Mot de passe


$$ \newcommand{\SetN}{\mathbb{N}} \newcommand{\SetR}{\mathbb{R}} \newcommand{\SetC}{\mathbb{C}} \newcommand{\SetK}{\mathbb{K}} \newcommand{\SetZ}{\mathbb{Z}} \newcommand{\SetQ}{\mathbb{Q}} \newcommand{\SetU}{\mathbb{U}} \newcommand\ds[0]{\displaystyle} \newcommand\PCar[1]{\large{\chi}_{#1}} \newcommand{\=}{\:=\:} \newcommand\tendvers[2]{\displaystyle\mathop{\longrightarrow}_{#1\rightarrow#2}} \newcommand\tr[0]{\:^t\!} \newcommand\limite[2]{\displaystyle\mathop{\text{lim}}_{#1\rightarrow#2}\:} \newcommand\Sup[1]{\displaystyle\mathop{sup}_{#1}} \newcommand\Inf[1]{\displaystyle\mathop{inf}_{#1}} \newcommand\Haut[1]{} \newcommand\vect[1]{\overrightarrow{#1}} \newcommand\tendversCU[0]{\:\displaystyle\mathop{\Large\longrightarrow}_{n\rightarrow+\infty}^{_{CU}}\:} \newcommand\tendversCS[0]{\:\displaystyle\mathop{\Large\longrightarrow}_{n\rightarrow+\infty}^{_{CS}}\:} \newcommand\tendversCN[0]{\:\displaystyle\mathop{\Large\longrightarrow}_{n\rightarrow+\infty}^{_{CN}}\:} \newcommand\tendversCUS[0]{\:\displaystyle\mathop{\Large\longrightarrow}_{n\rightarrow+\infty}^{_{CUS}}\:} \newcommand\tendversNorme[1]{\:\displaystyle\mathop{\Large\longrightarrow}_{n\rightarrow+\infty}^{#1}\:} \newcommand\simL[0]{\displaystyle\mathop{\sim}_{^{^L}}} \newcommand\simC[0]{\displaystyle\mathop{\sim}_{^{^C}}} \newcommand\simLC[0]{\displaystyle\mathop{\sim}_{^{^{LC}}}} \newcommand\fonction[5]{ \begin{array}{cccc} #1\::\:& #2 & \rightarrow & #3 \\ & #4 & \mapsto & \ds #5 \ \end{array}} $$
Liste chapitres Plan du chapitre
Section
sous-section
I. Notion de séries et séries de références.

          I.4. Opérations sur les séries.


Propriétés.2
  1. La somme de séries convergentes est convergente.
  2. La somme d'une série convergente et d'une série divergente est divergente.
  3. La multiplication d'une série convergente par un scalaire est une série convergente.
  4. La multiplication d'une série divergente par un scalaire non nul est une série divergente.


Remarques.
  1. Aucune information sur la somme de 2 séries divergentes !
  2. Quand on écrit : $$\sum_{n=0}^{+\infty}a_n+b_n\=\sum_{n=0}^{+\infty}a_n+\sum_{n=0}^{+\infty}b_n$$ Il faut vérifier que $\sum a_n$ et $\sum b_n$ sont convergentes.
  3. En pratique pour déterminer la nature d'une série, on peut casser la série et étudier la convergence des morceaux. Si au plus un des morceaux est divergent, on peut conclure. Voir l'éclatement plus loin.